对于一个平面来讲,有三个应力分量,即平行于X 轴的应力、平行于Y轴的应力和剪切应力,所以对于一般的三维异性体,即有三个平面,所以有9个应力分量,同理对应9个应变分量。应力和应变的关系并不是弹簧那么简单,对于弹簧体,在一维方向上,其应力就等于应变乘以弹性系数,而对于一个三维体来讲,其方向上的应力不仅和弹性系数有关,而且受到其它方向上的约束,例如对于一个平面体,在X轴向拉伸,所以平面体X 方向伸长,同时在Y方向缩短,其缩短必然引起Y轴向上的应力,所以其三维体的应力应变更加复杂。一般各向异性材料包含81个弹性常数,但是由于应力应变分量具有对称性,所以一般各向异形材料弹性常数为36个,有21个独立变量。
事实上,由于材料往往具有不同程度的弹性对称性,所以各向异性材料分为几种。一种就是单对称材料,单对称材料是指有一个弹性堆成绵的各向异性材料。如图4.2-1所示,如取xoy坐标面与弹性对称面平行,取A与A为相互对称点,则它们的弹性性能相同。即将z轴转到z’轴时,应力应变关系不变。如果材料存在对称面,则弹性常数将会减少,例如z=0平面为对称面,则所有与Z轴或3正方向有关的常数,必须与Z轴负方向有关的常数相同,剪应变分量εyz和εxz仅与剪应力分量εyz和εxz有关,则弹性常数可变为13个,因此单对称材料的应力应变关系可以简化。
另一种就是正交各向异性材料,如果材料有两各正交的材料性能对称面,则对于和这两个相垂直的平面也有对称面(第三个),则这种材料称为正交各向异性材料,其独立常数为9个。
若经过弹性体材料一轴线,在垂直于该轴线的平面内,各点的弹性性能在各个方向上都相同,则此材料称为横观各向同性材料,此平面叫各向同性面,其独立弹性常数变为5个。
若材料中每一点在任意方向上的弹性性能都相同,则此材料称为各向同性材料,独立弹性常数变为2个,例如传统的钢、铜等都是各向同性材料。
上面的材料弹性常数都是用刚度矩阵C表示,而工程上常采用工程弹性常数表示材料的弹性特性。这些工程弹性常数是广义的弹性模量、泊松比和剪切模量,这些常数可用简单的拉伸及纯剪切试验来测定。图4.3给出了三个单向拉伸和三个纯剪切试验的示意图。
复合材料层合板或层合壳中,单层的材料主方向往往和参考坐标轴不一致,如图4.4 所示,因此需要把材料主方向坐标系和参考坐标系下的应力应变进行转换,由此获得非材料主方向复合材料单层的应力-应变关系。转化的原则为:取任意需要的单元,把单元上的受力分解到参考坐标系中,然后再把刚才分解的力分别分解到材料主方向坐标系中,然后把分解好的力,按着方向进行叠加,得到材料主方向上的力,然后把得到的每个力除以垂直于该力的截面积,就得到材料主方向上的应力,因其复杂性,其具体公式不做阐述。